Entrance and exit at infinity for stable jump diffusions

Andreas Kyprianou (based on joint work with Leif Döring)

- $\blacktriangleright\,$ In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \le a < b \le \infty$
- ► The four types of boundary points are:

regular, if it is both accessible and enterable; exit, if it is accessible but not enterable; entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.

Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process ($X_t, t \ge 0$) from differential operators (diffusion generators)

$$\mathcal{A} := \kappa(x)\frac{d}{dx} + \frac{\sigma(x)^2}{2}\frac{d^2}{dx^2}$$

taking account of the different boundary conditions.

A change of space via the so-called scale function (say *s* which makes $(s(X_l), t \ge 0)$ a martingale)

$$dZ_t = \tilde{\sigma}(Z_t) \, dB_t, \quad Z_0 = z \in \mathbb{R}$$

- ▶ In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \le a < b \le \infty$
- ► The four types of boundary points are:

regular, if it is both accessible and enterable; exit, if it is accessible but not enterable; entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.

Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process ($X_t, t \ge 0$) from differential operators (diffusion generators)

$$\mathcal{A} := \kappa(x)\frac{d}{dx} + \frac{\sigma(x)^2}{2}\frac{d^2}{dx^2}$$

taking account of the different boundary conditions.

A change of space via the so-called scale function (say *s* which makes $(s(X_l), t \ge 0)$ a martingale)

$$dZ_t = \tilde{\sigma}(Z_t) \, dB_t, \quad Z_0 = z \in \mathbb{R}$$

- ▶ In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \le a < b \le \infty$
- ▶ The four types of boundary points are:

regular, if it is both accessible and enterable; exit, if it is accessible but not enterable; entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.

▶ Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process $(X_t, t \ge 0)$ from differential operators (diffusion generators)

$$\mathcal{A} := \kappa(x)\frac{d}{dx} + \frac{\sigma(x)^2}{2}\frac{d^2}{dx^2}$$

taking account of the different boundary conditions.

A change of space via the so-called scale function (say *s* which makes $(s(X_t), t \ge 0)$ a martingale)

$$dZ_t = \tilde{\sigma}(Z_t) dB_t, \quad Z_0 = z \in \mathbb{R}$$

- コン・4回シュ ヨシュ ヨン・9 くの

- ▶ In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \le a < b \le \infty$
- ▶ The four types of boundary points are:

regular, if it is both accessible and enterable; exit, if it is accessible but not enterable; entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.

Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process $(X_t, t \ge 0)$ from differential operators (diffusion generators)

$$\mathcal{A} := \kappa(x)\frac{d}{dx} + \frac{\sigma(x)^2}{2}\frac{d^2}{dx^2}$$

taking account of the different boundary conditions.

A change of space via the so-called scale function (say *s* which makes $(s(X_t), t \ge 0)$ a martingale)

$$dZ_t = \tilde{\sigma}(Z_t) dB_t, \quad Z_0 = z \in \mathbb{R}$$

・ロト・日本・モート モー うへの

- $\blacktriangleright\,$ In his seminal work in the 1950s, William Feller classified one-dimensional diffusion processes on $-\infty \le a < b \le \infty$
- ▶ The four types of boundary points are:

regular, if it is both accessible and enterable; exit, if it is accessible but not enterable; entrance, if it is enterable but not accessible; natural if it is neither accessible nor enterable.

Feller's definitions and proofs are purely analytic, using Hille-Yosida theory to generate Feller semigroup of a process $(X_t, t \ge 0)$ from differential operators (diffusion generators)

$$\mathcal{A} := \kappa(x)\frac{d}{dx} + \frac{\sigma(x)^2}{2}\frac{d^2}{dx^2}$$

taking account of the different boundary conditions.

A change of space via the so-called scale function (say *s* which makes $(s(X_t), t \ge 0)$ a martingale)

$$dZ_t = \tilde{\sigma}(Z_t) \, dB_t, \quad Z_0 = z \in \mathbb{R}$$

・ロト・日本・モート モー うへの

THE CASE OF AN INFINITE BOUNDARY

- ▶ In the setting of the entire real line, i.e. $a = -\infty$ and $b = +\infty$, the notion of entrance (in applications also called coming down from infinity) and exit (explosion) becomes interesting
- Depending on the growth of *σ* at infinity the infinite boundary points can be of an entrance type. Feller's results for this scenario imply that +∞ is an entrance boundary if and only if

$$\int^{+\infty} x \, \sigma(x)^{-2} \, dx < \infty,$$

i.e. σ growth slightly more than linearly at infinity.

THE CASE OF AN INFINITE BOUNDARY

- In the setting of the entire real line, i.e. a = -∞ and b = +∞, the notion of entrance (in applications also called coming down from infinity) and exit (explosion) becomes interesting
- Depending on the growth of *σ* at infinity the infinite boundary points can be of an entrance type. Feller's results for this scenario imply that +∞ is an entrance boundary if and only if

$$\int^{+\infty} x \, \sigma(x)^{-2} \, dx < \infty,$$

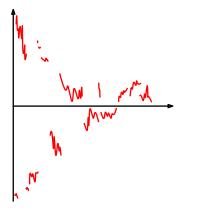
i.e. σ growth slightly more than linearly at infinity.

STABLE JUMP-DIFFUSIONS

▶ Focus our study on so-called stable jump diffusions:

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

• Intersted in entrance from $\{+\infty\}$, $\{-\infty\}$ and $\pm \infty := \{+\infty\} \cup \{-\infty\}$



A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all c > 0 and $x \in \mathbb{R}$.

 $(cX_{c-\alpha_t}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X_t, t \ge 0)$ under \mathbb{P}_{cx} ,

where $(\mathbb{P}_x, x \in \mathbb{R})$ are the probabilities of X and $\alpha \in (0, 2)$.

$$\Psi(z) = |z|^{\alpha} \left(e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z > 0\}} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z < 0\}} \right), \quad z \in \mathbb{R}$$

$$\frac{\Pi(\mathrm{d}x)}{\mathrm{d}x} = \Gamma(1+\alpha)\frac{\sin(\pi\alpha\rho)}{\pi}\frac{1}{x^{1+\alpha}}\mathbf{1}_{(x>0)} + \Gamma(1+\alpha)\frac{\sin(\pi\alpha\hat{\rho})}{\pi}\frac{1}{|x|^{1+\alpha}}\mathbf{1}_{(x<0)},$$

イロト イロト イヨト イヨト ヨー のへぐ

A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all c > 0 and $x \in \mathbb{R}$.

 $(cX_{c-\alpha_t}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X_t, t \ge 0)$ under \mathbb{P}_{cx} ,

where $(\mathbb{P}_x, x \in \mathbb{R})$ are the probabilities of X and $\alpha \in (0, 2)$.

Semigroup of X is entirely characterised by $\Psi(z) := -\log \mathbb{E}_0 \left[e^{izX_1} \right]$, satisfying

$$\Psi(z) = |z|^{\alpha} \left(e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z > 0\}} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z < 0\}} \right), \quad z \in \mathbb{R}.$$

where $\rho = \mathbb{P}(X_1 > 0)$.

$$\frac{\Pi(\mathrm{d}x)}{\mathrm{d}x} = \Gamma(1+\alpha) \frac{\sin(\pi\alpha\rho)}{\pi} \frac{1}{x^{1+\alpha}} \mathbf{1}_{(x>0)} + \Gamma(1+\alpha) \frac{\sin(\pi\alpha\hat{\rho})}{\pi} \frac{1}{|x|^{1+\alpha}} \mathbf{1}_{(x<0)},$$

イロト イロト イヨト イヨト ヨー のへぐ

A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all c > 0 and $x \in \mathbb{R}$,

 $(cX_{c-\alpha_t}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X_t, t \ge 0)$ under \mathbb{P}_{cx} ,

where $(\mathbb{P}_x, x \in \mathbb{R})$ are the probabilities of *X* and $\alpha \in (0, 2)$.

Semigroup of X is entirely characterised by $\Psi(z) := -\log \mathbb{E}_0 \left[e^{izX_1} \right]$, satisfying

$$\Psi(z) = |z|^{\alpha} \left(e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z > 0\}} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z < 0\}} \right), \quad z \in \mathbb{R}$$

where $\rho = \mathbb{P}(X_1 > 0)$.

• The Lévy measure associated with Ψ :

$$\frac{\Pi(dx)}{dx} = \Gamma(1+\alpha) \frac{\sin(\pi\alpha\rho)}{\pi} \frac{1}{x^{1+\alpha}} \mathbf{1}_{(x>0)} + \Gamma(1+\alpha) \frac{\sin(\pi\alpha\rho)}{\pi} \frac{1}{|x|^{1+\alpha}} \mathbf{1}_{(x<0)},$$

where $\hat{\rho} := 1 - \rho$. In the case that $\alpha = 1$, we take $\rho = 1/2$, meaning that *X* corresponds to the Cauchy process.

Convention from now on: Anything with a $\hat{}$ is associated to the law of -X. E.g. $\hat{\mathbb{P}}_x$ is the law of -X with $X_0 = -x$.

▶ If *X* has only upwards (resp. downwards) jumps we say *X* is spectrally positive (resp. negative). If *X* has jumps in both directions we say *X* is two-sided. A spectrally positive (resp. negative) stable process with $\alpha < 1$ is necessarily increasing (resp. decreasing).

A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all c > 0 and $x \in \mathbb{R}$,

 $(cX_{c-\alpha_t}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X_t, t \ge 0)$ under \mathbb{P}_{cx} ,

where $(\mathbb{P}_x, x \in \mathbb{R})$ are the probabilities of *X* and $\alpha \in (0, 2)$.

Semigroup of X is entirely characterised by $\Psi(z) := -\log \mathbb{E}_0 \left[e^{izX_1} \right]$, satisfying

$$\Psi(z) = |z|^{\alpha} \left(e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z > 0\}} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z < 0\}} \right), \quad z \in \mathbb{R}$$

where $\rho = \mathbb{P}(X_1 > 0)$.

• The Lévy measure associated with Ψ :

$$\frac{\Pi(\mathrm{d}x)}{\mathrm{d}x} = \Gamma(1+\alpha)\frac{\sin(\pi\alpha\rho)}{\pi}\frac{1}{x^{1+\alpha}}\mathbf{1}_{(x>0)} + \Gamma(1+\alpha)\frac{\sin(\pi\alpha\hat{\rho})}{\pi}\frac{1}{|x|^{1+\alpha}}\mathbf{1}_{(x<0)},$$

where $\hat{\rho} := 1 - \rho$. In the case that $\alpha = 1$, we take $\rho = 1/2$, meaning that *X* corresponds to the Cauchy process.

Convention from now on: Anything with a $\hat{}$ is associated to the law of -X. E.g. $\hat{\mathbb{P}}_x$ is the law of -X with $X_0 = -x$.

▶ If *X* has only upwards (resp. downwards) jumps we say *X* is spectrally positive (resp. negative). If *X* has jumps in both directions we say *X* is two-sided. A spectrally positive (resp. negative) stable process with $\alpha < 1$ is necessarily increasing (resp. decreasing).

A stable process lies in the intersection of the class of Lévy process (stationary and independent increments) and the class of self-similar Markov processes: for all c > 0 and $x \in \mathbb{R}$.

 $(cX_{c-\alpha_t}, t \ge 0)$ under \mathbb{P}_x is equal in law to $(X_t, t \ge 0)$ under \mathbb{P}_{cx} ,

where $(\mathbb{P}_x, x \in \mathbb{R})$ are the probabilities of X and $\alpha \in (0, 2)$.

Semigroup of X is entirely characterised by $\Psi(z) := -\log \mathbb{E}_0 \left[e^{izX_1} \right]$, satisfying

$$\Psi(z) = |z|^{\alpha} \left(e^{\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z > 0\}} + e^{-\pi i \alpha (\frac{1}{2} - \rho)} \mathbf{1}_{\{z < 0\}} \right), \quad z \in \mathbb{R}$$

where $\rho = \mathbb{P}(X_1 > 0)$.

• The Lévy measure associated with Ψ :

$$\frac{\Pi(\mathrm{d}x)}{\mathrm{d}x} = \Gamma(1+\alpha) \frac{\sin(\pi\alpha\rho)}{\pi} \frac{1}{x^{1+\alpha}} \mathbf{1}_{(x>0)} + \Gamma(1+\alpha) \frac{\sin(\pi\alpha\hat{\rho})}{\pi} \frac{1}{|x|^{1+\alpha}} \mathbf{1}_{(x<0)},$$

where $\hat{\rho} := 1 - \rho$. In the case that $\alpha = 1$, we take $\rho = 1/2$, meaning that *X* corresponds to the Cauchy process.

Convention from now on: Anything with a $\hat{}$ is associated to the law of -X. E.g. $\hat{\mathbb{P}}_x$ is the law of -X with $X_0 = -x$.

▶ If *X* has only upwards (resp. downwards) jumps we say *X* is spectrally positive (resp. negative). If X has jumps in both directions we say X is two-sided. A spectrally positive (resp. negative) stable process with $\alpha < 1$ is necessarily increasing (resp. decreasing). イロト イロト イヨト イヨト ヨー のへぐ

SDE

Proposition (Zanzotto (2002), Döring & K. (2018))

Suppose that σ is strictly positive. Then there is a unique (possibly exploding) weak solution *Z* to the SDE

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

and Z can be expressed as time-change under \mathbb{P}_z via

$$Z_t := X_{\tau_t}, \quad t < T,$$

where

$$\tau_t = \inf\left\{s > 0: \int_0^s \sigma(\mathbf{X}_s)^{-\alpha} \mathrm{d}s > t\right\}$$

and the finite or infinite explosion time is $T = \int_0^\infty \sigma(X_s)^{-\alpha} ds$.

The law of the unique solution *Z* will be denoted by $P_z, z \in \mathbb{R}$.

Technical point: when $\alpha \in (1, 2)$, the origin is a recurrent point, hence as $\sigma > 0$, $T = \infty$. However, when $\alpha \in (1, 2)$, $k := \inf\{t > 0 : Z_t = 0\}$ is almost surely finite (irrespective of Z_0).

SDE

Proposition (Zanzotto (2002), Döring & K. (2018))

Suppose that σ is strictly positive. Then there is a unique (possibly exploding) weak solution *Z* to the SDE

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

and Z can be expressed as time-change under \mathbb{P}_z via

$$Z_t := X_{\tau_t}, \quad t < T,$$

where

$$\tau_t = \inf\left\{s > 0: \int_0^s \sigma(X_s)^{-\alpha} \mathrm{d}s > t\right\}$$

and the finite or infinite explosion time is $T = \int_0^\infty \sigma(X_s)^{-\alpha} ds$.

The law of the unique solution *Z* will be denoted by $P_z, z \in \mathbb{R}$.

Technical point: when $\alpha \in (1, 2)$, the origin is a recurrent point, hence as $\sigma > 0$, $T = \infty$.

However, when $\alpha \in (1, 2)$, $k := \inf\{t > 0 : Z_t = 0\}$ is almost surely finite (irrespective of Z_0).

6/23

- コン・4回シュ ヨシュ ヨン・9 くの

SDE

Proposition (Zanzotto (2002), Döring & K. (2018))

Suppose that σ is strictly positive. Then there is a unique (possibly exploding) weak solution *Z* to the SDE

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

and Z can be expressed as time-change under \mathbb{P}_z via

$$Z_t := X_{\tau_t}, \quad t < T,$$

where

$$\tau_t = \inf\left\{s > 0: \int_0^s \sigma(\mathbf{X}_s)^{-\alpha} \mathrm{d}s > t\right\}$$

and the finite or infinite explosion time is $T = \int_0^\infty \sigma(X_s)^{-\alpha} ds$.

The law of the unique solution *Z* will be denoted by $P_z, z \in \mathbb{R}$.

Technical point: when $\alpha \in (1, 2)$, the origin is a recurrent point, hence as $\sigma > 0$, $T = \infty$.

However, when $\alpha \in (1, 2)$, $k := \inf\{t > 0 : Z_t = 0\}$ is almost surely finite (irrespective of Z_0).

6/23

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ つへぐ

Definition

We say that $\pm \infty$ is a (continuous) entrance point for a Feller process Y on \mathbb{R} with transition semigroup \mathcal{P} (with probabilities \mathbb{P}_x , $x \in \mathbb{R}$) if

- (i) the point $\pm \infty$ is not accessible,
- (ii) the semigroup \mathcal{P} can be extended to a Feller semigroup $\overline{\mathcal{P}}$ on $C_b(\overline{\mathbb{R}})$,

(iii) there is continuous entrance in the sense that

$$\mathbb{P}_{\pm\infty}\left(\lim_{t\downarrow 0}|Y_t|=\infty,\limsup_{t\downarrow 0}Y_t=+\infty,\liminf_{t\downarrow 0}Y_t=-\infty\right)=1$$

・ロト・日本・モート モー うへの

Analogously, we define entrance from $-\infty$ as extension to $C_b(\mathbb{R})$ and entrance from $+\infty$ as extension to $C_b(\mathbb{R}) = C(\mathbb{R})$.

ENTRANCE AT INFINITY

Theorem (Döring & K. (2018))

Suppose that σ is uniformly bounded away from the origin and let

$$I^{\sigma,\alpha}(A) = \int_A \sigma(x)^{-\alpha} |x|^{\alpha-1} \, \mathrm{d}x \quad \text{and} \quad I^{\sigma,1} = \int_{\mathbb{R}} \sigma(x)^{-1} \log |x| \, \mathrm{d}x.$$

Then the following table exhaustively summarizes entrance points at infinity of

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

Necessary and sufficient conditions for entrance from infinite boundary points						
α	Jumps	$+\infty$	$-\infty$	±∞		
	only↓	X	X	X		
< 1	only ↑	X	X	X		
	$\uparrow \& \downarrow$	X	X	X		
= 1	$\uparrow \& \downarrow$	X	X	✓ iff $I^{\sigma,1} < \infty$		
	only↓	X	$\checkmark \text{ iff } l^{\sigma,\alpha}(\mathbb{R}_{-}) < \infty$	X		
> 1	only ↑	$\checkmark \operatorname{iff} l^{\sigma,\alpha}(\mathbb{R}_+) < \infty$	×	×		
	↑&↓	X	X	✓ iff $l^{\sigma, \alpha}(\mathbb{R}) < \infty$		
= 2	none	✓ iff $I^{\sigma,2}(\mathbb{R}_+) < \infty$	✓ iff $I^{\sigma,2}(\mathbb{R}_{-}) < \infty$	×		

ENTRANCE AT INFINITY

Theorem (Döring & K. (2018))

Suppose that σ is uniformly bounded away from the origin and let

$$I^{\sigma,\alpha}(A) = \int_A \sigma(x)^{-\alpha} |x|^{\alpha-1} \, \mathrm{d}x \quad \text{and} \quad I^{\sigma,1} = \int_{\mathbb{R}} \sigma(x)^{-1} \log |x| \, \mathrm{d}x.$$

Then the following table exhaustively summarizes entrance points at infinity of

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

Necessary and sufficient conditions for entrance from infinite boundary points						
α	Jumps	$+\infty$	$-\infty$	±∞		
	only↓	X	X	X		
< 1	only ↑	X	X	X		
	↑&↓	X	X	X		
= 1	$\uparrow \& \downarrow$	X	X	✓ iff $I^{\sigma,1} < \infty$		
	only↓	X	$\checkmark \text{ iff } l^{\sigma,\alpha}(\mathbb{R}_{-}) < \infty$	X		
> 1	only ↑	$\checkmark \text{ iff } l^{\sigma,\alpha}(\mathbb{R}_+) < \infty$	×	×		
	$\uparrow \& \downarrow$	×	X	$\checkmark \text{ iff } l^{\sigma,\alpha}(\mathbb{R}) < \infty$		
= 2	none	✓ iff $I^{\sigma,2}(\mathbb{R}_+) < \infty$	✓ iff $I^{\sigma,2}(\mathbb{R}_{-}) < \infty$	X		

Henceforth concentrate on the case of two-sided jumps.

$Riesz-Bogdan-\dot{Z}AK\ TRANSFORM$

Convention from now on: Anything with a $\hat{}$ is associated to the law of -X. E.g. $\hat{\mathbb{P}}_x$ is the law of -X with $X_0 = -x$.

Theorem (Bogdan & Żak (2010), K. (2016))

Suppose that X is a stable process with two-sided jumps. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \quad t \ge 0.$$

Then, for all $x \in \mathbb{R} \setminus \{0\}$,

$$\frac{1}{X_{\eta(t)}}, \qquad t \ge 0$$

under \mathbb{P}_x a self-similar Markov process equal in law to $(X, \mathbb{P}_{1/x}^\circ)$, where

$$\frac{\mathrm{d}\mathbb{P}_x^{\circ}}{\mathrm{d}\mathbb{P}_x}\Big|_{\mathcal{F}_t} = \frac{h(X_t)}{h(x)}\mathbf{1}_{\{t < \tau^{\{0\}}\}}$$

 $h(z) = (\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\operatorname{sgn}(z)) |z|^{\alpha-1}$ and $\mathcal{F}_t := \sigma(X_s : s \le t), t \ge 0.$

$Riesz-Bogdan-\dot{Z}AK\ TRANSFORM$

Convention from now on: Anything with a $\hat{}$ is associated to the law of -X. E.g. $\hat{\mathbb{P}}_x$ is the law of -X with $X_0 = -x$.

Theorem (Bogdan & Żak (2010), K. (2016))

Suppose that X is a stable process with two-sided jumps. Define

$$\eta(t) = \inf\{s > 0 : \int_0^s |X_u|^{-2\alpha} du > t\}, \qquad t \ge 0.$$

Then, for all $x \in \mathbb{R} \setminus \{0\}$,

$$\frac{1}{X_{\eta(t)}}, \qquad t \ge 0$$

under $\hat{\mathbb{P}}_x$ a self-similar Markov process equal in law to $(X, \mathbb{P}_{1/x}^\circ)$, where

$$\frac{\mathrm{d}\mathbb{P}_x^\circ}{\mathrm{d}\mathbb{P}_x}\Big|_{\mathcal{F}_t} = \frac{h(X_t)}{h(x)}\mathbf{1}_{\{t < \tau^{\{0\}}\}}$$

$$\begin{split} h(z) &= (\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho})) \operatorname{sgn}(z)) \, |z|^{\alpha - 1} \\ \text{and } \mathcal{F}_t &:= \sigma(X_s : s \leq t), t \geq 0. \end{split}$$

- ► Recalling that α ∈ (1,2), |x|^{α-1} as a Doob *h*-function, rewards paths that are far from the origin (|x| ≫ 1) and punishes paths that stray too close to the origin (|x| ≪ 1).
- ▶ In fact it has been shown [Chaumont, Panti & Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)] that $(X, \mathbb{P}_u^o), y \neq 0$, can be identified by the limit

$$\mathbb{P}_{y}^{\circ}(A) = \lim_{s \to \infty} \mathbb{P}_{y}(A \mid T_{0} > t + s),$$

for $A \in \mathcal{F}_t$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

▶ (WARNING! Ultra specialist information): As *X* is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$\mathbb{P}_0^{\circ}(X_t^{\circ} \in \mathrm{d}z) := h(z)n(X_t \in \mathrm{d}z, t < \zeta)$$

consistently with \mathbb{P}_{y}° , $y \neq 0$, where ζ is the excursion lifetime and

 $h(z) = (\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\operatorname{sgn}(z))|z|^{\alpha-1}$

Executive summary of last point): The limit

$$\mathbb{P}_0^\circ := \lim_{|y| \to 0} \mathbb{P}_y^\circ$$

- Recalling that α ∈ (1,2), |x|^{α-1} as a Doob *h*-function, rewards paths that are far from the origin (|x| ≫ 1) and punishes paths that stray too close to the origin (|x| ≪ 1).
- ▶ In fact it has been shown [Chaumont, Panti & Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)] that $(X, \mathbb{P}_{y}^{\circ}), y \neq 0$, can be identified by the limit

$$\mathbb{P}_{y}^{\circ}(A) = \lim_{s \to \infty} \mathbb{P}_{y}(A \mid T_{0} > t + s),$$

for $A \in \mathcal{F}_t$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

• (WARNING! Ultra specialist information): As *X* is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$\mathbb{P}_0^{\circ}(X_t^{\circ} \in \mathrm{d}z) := h(z)n(X_t \in \mathrm{d}z, t < \zeta)$$

consistently with \mathbb{P}_{y}° , $y \neq 0$, where ζ is the excursion lifetime and

 $h(z) = (\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\operatorname{sgn}(z)) |z|^{\alpha - 1}$

Executive summary of last point): The limit

$$\mathbb{P}_0^\circ := \lim_{|y| \to 0} \mathbb{P}_y^\circ$$

- Recalling that α ∈ (1,2), |x|^{α−1} as a Doob *h*-function, rewards paths that are far from the origin (|x| ≫ 1) and punishes paths that stray too close to the origin (|x| ≪ 1).
- ▶ In fact it has been shown [Chaumont, Panti & Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)] that $(X, \mathbb{P}_{y}^{\circ}), y \neq 0$, can be identified by the limit

$$\mathbb{P}_{y}^{\circ}(A) = \lim_{s \to \infty} \mathbb{P}_{y}(A \mid T_{0} > t + s),$$

for $A \in \mathcal{F}_t$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

• (WARNING! Ultra specialist information): As *X* is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$\mathbb{P}_0^{\circ}(X_t^{\circ} \in \mathrm{d}z) := h(z)n(X_t \in \mathrm{d}z, t < \zeta)$$

consistently with \mathbb{P}_{y}° , $y \neq 0$, where ζ is the excursion lifetime and

 $h(z) = (\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\operatorname{sgn}(z)) |z|^{\alpha - 1}$

Executive summary of last point): The limit

$$\mathbb{P}_0^\circ := \lim_{|y| \to 0} \mathbb{P}_y^\circ$$

- Recalling that α ∈ (1,2), |x|^{α-1} as a Doob *h*-function, rewards paths that are far from the origin (|x| ≫ 1) and punishes paths that stray too close to the origin (|x| ≪ 1).
- ▶ In fact it has been shown [Chaumont, Panti & Rivero (2013), Kuznetsov, K., Pardo, Watson (2014)] that $(X, \mathbb{P}_{v}^{0}), y \neq 0$, can be identified by the limit

$$\mathbb{P}_{y}^{\circ}(A) = \lim_{s \to \infty} \mathbb{P}_{y}(A \mid T_{0} > t + s),$$

for $A \in \mathcal{F}_t$ and $T_0 = \inf\{t > 0 : X_t = 0\}$.

• (WARNING! Ultra specialist information): As *X* is a point recurrent process, there exists an excursion measure $n(\cdot)$ for the Poisson random field of excursions from the origin, from which one can construct (up to a constant)

$$\mathbb{P}_0^{\circ}(X_t^{\circ} \in \mathrm{d}z) := h(z)n(X_t \in \mathrm{d}z, t < \zeta)$$

consistently with \mathbb{P}_{y}° , $y \neq 0$, where ζ is the excursion lifetime and

 $h(z) = (\sin(\pi\alpha\rho) + \sin(\pi\alpha\hat{\rho}) - (\sin(\pi\alpha\rho) - \sin(\pi\alpha\hat{\rho}))\operatorname{sgn}(z)) |z|^{\alpha - 1}$

▶ (Executive summary of last point): The limit

$$\mathbb{P}_0^\circ := \lim_{|y| \to 0} \mathbb{P}_y^\circ$$

Time change and Riesz-Bogdan- \dot{Z} ak

Remember there is a unique weak solution Z to the SDE

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

and *Z* can be expressed as time-change under \mathbb{P}_z via $Z_t := X_{\tau_t}$, t < T, where

$$\tau_t = \inf\left\{s > 0: \int_0^s \sigma(X_s)^{-\alpha} \mathrm{d}s > t\right\}$$

Proposition (Döring & K. (2018))

Set

$$\beta(x) = \sigma(1/x)^{-\alpha} |x|^{-2\alpha}, \qquad x \in \mathbb{R} \setminus \{0\}.$$

Define the time-space transformation

$$Z_t^{\dagger} = \frac{1}{\hat{X}_{\theta_t}^{\circ}}, \qquad t < \int_0^{\infty} \beta(\hat{X}_u^{\circ}) \, du,$$

where

$$\theta_t = \inf\left\{s > 0: \int_0^s \beta(\hat{X}_u^\circ) \, du > t\right\}.$$

If \hat{X}° has law $\hat{\mathbb{P}}_{1/x'}^{\circ} x \neq 0$, then Z^{\dagger} is equal in law to the unique solution to the SDE under \mathbb{P}_x up to killing at the origin.

Time change and Riesz-Bogdan- \dot{Z} ak

Remember there is a unique weak solution Z to the SDE

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

and *Z* can be expressed as time-change under \mathbb{P}_z via $Z_t := X_{\tau_t}$, t < T, where

$$\tau_t = \inf\left\{s > 0: \int_0^s \sigma(X_s)^{-\alpha} \mathrm{d}s > t\right\}$$

Proposition (Döring & K. (2018)) Set

$$\beta(x) = \sigma(1/x)^{-\alpha} |x|^{-2\alpha}, \qquad x \in \mathbb{R} \setminus \{0\}.$$

Define the time-space transformation

$$Z_t^{\dagger} = \frac{1}{\hat{X}_{\theta_t}^{\circ}}, \qquad t < \int_0^{\infty} \beta(\hat{X}_u^{\circ}) \, du,$$

where

$$\theta_t = \inf\left\{s > 0: \int_0^s \beta(\hat{X}_u^\circ) \, du > t\right\}.$$

If \hat{X}° has law $\hat{\mathbb{P}}_{1/x'}^{\circ}$, $x \neq 0$, then Z^{\dagger} is equal in law to the unique solution to the SDE under \mathbb{P}_x up to killing at the origin.

▶ We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$ implies that $\pm \infty$ is an entrance point for

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

- Heuristically we want to have $Z = {}^d X_{\tau}$ enter at $\pm \infty$
- Which is to have 1/Z. (or indeed 1/Z.) enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which is to have X^o_θ enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0, providing we can control θ .
- Needs weak convergence of $\int_0^t \beta(\hat{X}_u^\circ) du$ as $|\hat{X}_0^\circ| \to 0$.
- Suffices to check

$$\lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^t \beta(\hat{X}_u^{\circ}) du \right] < \lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^\infty \beta(\hat{X}_u^{\circ}) du \right] < \infty$$

13/23 ・ロト・(アト・モト・モー・ショーの)へで

▶ We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$ implies that $\pm \infty$ is an entrance point for

 $dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$

- Heuristically we want to have $Z = {}^d X_{\tau}$. enter at $\pm \infty$
- Which is to have 1/Z. (or indeed 1/Z.) enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which is to have X^o_θ enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0, providing we can control θ .
- ▶ Needs weak convergence of $\int_0^t \beta(\hat{X}_u^\circ) du$ as $|\hat{X}_0^\circ| \to 0$.
- Suffices to check

$$\lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^t \beta(\hat{X}_u^{\circ}) du \right] < \lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^\infty \beta(\hat{X}_u^{\circ}) du \right] < \infty$$

13/23 1 > 《 큔 > 《 프 > 《 프 > 프 · · · 이 < 안

▶ We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$ implies that $\pm \infty$ is an entrance point for

 $dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$

- Heuristically we want to have $Z = {}^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have 1/Z. (or indeed 1/Z[†]) enter at 0, crossing the origin infinitely often for arbitrarily small times
- ▶ Which is to have $\tilde{X}^{\circ}_{\theta_{-}}$ enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0, providing we can control θ .
- Needs weak convergence of $\int_0^t \beta(\hat{X}_u^\circ) du$ as $|\hat{X}_0^\circ| \to 0$.
- Suffices to check

$$\lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^t \beta(\hat{X}_u^{\circ}) du \right] < \lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^\infty \beta(\hat{X}_u^{\circ}) du \right] < \infty$$

13/23 ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ < ♡ < ♡

▶ We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$ implies that $\pm \infty$ is an entrance point for

 $dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$

- Heuristically we want to have $Z = {}^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have 1/Z. (or indeed 1/Z[†]) enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which is to have X^o_θ enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0, providing we can control θ .
- Needs weak convergence of $\int_0^t \beta(\hat{X}_u^\circ) du$ as $|\hat{X}_0^\circ| \to 0$.
- Suffices to check

$$\lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^t \beta(\hat{X}_u^{\circ}) du \right] < \lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^\infty \beta(\hat{X}_u^{\circ}) du \right] < \infty$$

▶ We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$ implies that $\pm \infty$ is an entrance point for

 $dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$

- Heuristically we want to have $Z = {}^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have 1/Z. (or indeed 1/Z[†]) enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which is to have X^o_θ enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which will happen, since X[°] can enter at 0, providing we can control θ.
- Needs weak convergence of $\int_0^t \beta(\hat{X}_u^\circ) du$ as $|\hat{X}_0^\circ| \to 0$.
- Suffices to check

$$\lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^t \beta(\hat{X}_u^{\circ}) du \right] < \lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^\infty \beta(\hat{X}_u^{\circ}) du \right] < \infty$$

13/23 ▶ < 클 ▶ < 클 ▶ < 클 ▶ 클 ∽ 역 ☉

▶ We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$ implies that $\pm \infty$ is an entrance point for

 $dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$

- Heuristically we want to have $Z = {}^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have 1/Z. (or indeed 1/Z[†]) enter at 0, crossing the origin infinitely often for arbitrarily small times
- ▶ Which is to have $\hat{X}^{\circ}_{\theta_{-}}$ enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which will happen, since X[°] can enter at 0, providing we can control θ.
- Needs weak convergence of $\int_0^t \beta(\hat{X}_u^\circ) du$ as $|\hat{X}_0^\circ| \to 0$.
- Suffices to check

$$\lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^t \beta(\hat{X}_u^{\circ}) du \right] < \lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^\infty \beta(\hat{X}_u^{\circ}) du \right] < \infty$$

▶ We want to show that $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$ implies that $\pm \infty$ is an entrance point for

 $dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$

- Heuristically we want to have $Z = {}^{d} X_{\tau}$. enter at $\pm \infty$
- Which is to have 1/Z. (or indeed 1/Z[†]) enter at 0, crossing the origin infinitely often for arbitrarily small times
- ▶ Which is to have $\hat{X}^{\circ}_{\theta_{-}}$ enter at 0, crossing the origin infinitely often for arbitrarily small times
- Which will happen, since \hat{X}° can enter at 0, providing we can control θ .
- Needs weak convergence of $\int_0^t \beta(\hat{X}_u^\circ) du$ as $|\hat{X}_0^\circ| \to 0$.
- Suffices to check

$$\lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^t \beta(\hat{X}_u^{\circ}) du \right] < \lim_{|x|\to 0} \hat{\mathbb{E}}_x^{\circ} \left[\int_0^\infty \beta(\hat{X}_u^{\circ}) du \right] < \infty$$

Writing $G_{\hat{X}^{\circ}}(x, dy)$ for the resolvent of \hat{X}° and $G_{\hat{X}^{\dagger}}(x, dy)$ for the resolvent of X killed on first hitting the origin,

$$\begin{split} &\hat{\mathbb{E}}_{x}^{\circ} \left[\int_{0}^{\infty} \beta(\hat{X}_{u}^{\circ}) du \right] \\ &= \int_{\mathbb{R}} G_{\hat{X}^{\circ}}(x, dy) \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \\ &= \int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x, dy) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \\ &\approx \int_{\mathbb{R}} \left(|y|^{\alpha-1} s(y) - |y-x|^{\alpha-1} s(y-x) + |x|^{\alpha-1} s(-x) \right) \frac{|y|^{\alpha-1}}{|x|^{\alpha-1}} \sigma(1/y)^{-\alpha} |y|^{-2\alpha}, \end{split}$$

which is finite if

$$\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} \, \mathrm{d}x < \infty.$$

Note, for a Markov process *Y*, with probabilities P_x , $x \in E$,

4

$$G_{\mathbf{Y}}(x, \mathbf{d}y) = \int_0^\infty \mathbb{P}_x(Y_t \in \mathbf{d}y) \mathbf{d}t, \qquad x, y \in E.$$

Proposition (Döring & K. (2018))

Suppose that \hat{X}° has probabilities $\hat{\mathbb{P}}_{x}^{\circ}$, $x \in \mathbb{R}$. Define $\hat{Z}_{t}^{\circ} = \hat{X}_{\iota_{t}}^{\circ}$, $t \geq 0$, where the time-change ι is given by

$$\iota_t = \inf\left\{s > 0: \int_0^s \sigma(\hat{X}_s^\circ)^{-\alpha} ds > t\right\}, \qquad t < \int_0^\infty \sigma(\hat{X}_s^\circ)^{-\alpha} ds.$$

Recall that *Z* has the law of the unique weak solution to the SDE and Z^{\dagger} is the same process killed on first hitting 0.

If $\pm\infty$ is an entrance point for Z, then the time reversed process $Z^{\dagger}_{(k-t)-}$, $t \leq k$, under $P_{\pm\infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}° , where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $k = \inf\{t > 0 : Z^{\dagger}_t = 0\}$).

Remark on proof: Important step is to prove weak duality:

$$p_{Z^{\dagger}}(t, y, \mathrm{d}z)\mu(\mathrm{d}y) = p_{\hat{Z}^{\circ}}(t, z, \mathrm{d}y)\mu(\mathrm{d}z)$$

where

$$\mu(dy) = \int_{\mathbb{R}} \nu(dx) G_{\hat{Z}^{\circ}}(x, dy) = \sigma(x)^{-\alpha} h(x) dx$$

and $G_{\hat{Z}^{\circ}}$ is the resolvent of \hat{Z}°

Proposition (Döring & K. (2018))

Suppose that \hat{X}° has probabilities $\hat{\mathbb{P}}_{x}^{\circ}$, $x \in \mathbb{R}$. Define $\hat{Z}_{t}^{\circ} = \hat{X}_{\iota_{t}}^{\circ}$, $t \geq 0$, where the time-change ι is given by

$$\iota_t = \inf\left\{s > 0: \int_0^s \sigma(\hat{X}_s^\circ)^{-\alpha} ds > t\right\}, \qquad t < \int_0^\infty \sigma(\hat{X}_s^\circ)^{-\alpha} ds.$$

Recall that *Z* has the law of the unique weak solution to the SDE and Z^{\dagger} is the same process killed on first hitting 0.

If $\pm\infty$ is an entrance point for Z, then the time reversed process $Z^{\dagger}_{(k-t)-}$, $t \leq k$, under $P_{\pm\infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}° , where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $k = \inf\{t > 0 : Z^{\dagger}_t = 0\}$).

Remark on proof: Important step is to prove weak duality:

$$p_{Z^{\dagger}}(t, y, \mathrm{d}z)\mu(\mathrm{d}y) = p_{\hat{Z}^{\circ}}(t, z, \mathrm{d}y)\mu(\mathrm{d}z)$$

where

$$\mu(dy) = \int_{\mathbb{R}} \nu(dx) G_{\hat{Z}^{\circ}}(x, dy) = \sigma(x)^{-\alpha} h(x) dx$$

and $G_{\hat{7}\circ}$ is the resolvent of \hat{Z}°

Proposition (Döring & K. (2018))

Suppose that \hat{X}° has probabilities $\hat{\mathbb{P}}_{x}^{\circ}$, $x \in \mathbb{R}$. Define $\hat{Z}_{t}^{\circ} = \hat{X}_{\iota_{t}}^{\circ}$, $t \geq 0$, where the time-change ι is given by

$$\iota_t = \inf\left\{s > 0: \int_0^s \sigma(\hat{X}_s^\circ)^{-\alpha} ds > t\right\}, \qquad t < \int_0^\infty \sigma(\hat{X}_s^\circ)^{-\alpha} ds.$$

Recall that *Z* has the law of the unique weak solution to the SDE and Z^{\dagger} is the same process killed on first hitting 0.

If $\pm\infty$ is an entrance point for *Z*, then the time reversed process $Z^{\dagger}_{(k-t)-}$, $t \leq k$, under $P_{\pm\infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}° , where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $k = \inf\{t > 0 : Z^{\dagger}_t = 0\}$).

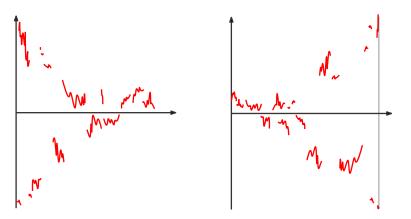
Remark on proof: Important step is to prove weak duality:

$$p_{Z^{\dagger}}(t, y, \mathrm{d}z)\mu(\mathrm{d}y) = p_{\hat{Z}^{\circ}}(t, z, \mathrm{d}y)\mu(\mathrm{d}z)$$

where

$$\mu(dy) = \int_{\mathbb{R}} \nu(dx) G_{\hat{Z}^{\circ}}(x, dy) = \sigma(x)^{-\alpha} h(x) dx$$

and $G_{\hat{Z}^{\circ}}$ is the resolvent of \hat{Z}°



The time reversed process $Z^{\dagger}_{(k-t)-}$, $t \leq k$, under $P_{\pm\infty}$ is a time-homogenous Markov process with transition semigroup which agrees with that of \hat{Z}° , where k is any almost surely finite last passage time for Z^{\dagger} (e.g. $k = \inf\{t > 0 : Z^{\dagger}_{t} = 0\}$)

• We want to show that if $\pm \infty$ is an entrance point for

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0,$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$.

- ▶ If $\pm \infty$ is an entrance point, then *Z* can be seen as a Feller process on the compact space \mathbb{R} .
- ▶ Getoor's equivalent definitions of transience:
 - On the one hand, last exit from any compact set is a.s. finite
 - On the other hand the resolvent of any compact set is finite
- As $\overline{\mathbb{R}}$ is compact itself,

$$G_Z(\pm\infty,\overline{\mathbb{R}})<\infty$$

Hunt-Nagasawa duality implies that

$$G_Z(\pm\infty,\overline{\mathbb{R}}) = G_{\hat{Z}^\circ}(0,\mathbb{R}) < \infty$$

$$\infty > G_{\hat{Z}^{\diamond}}(0,\overline{\mathbb{R}}) \approx G_{\hat{Z}^{\diamond}}(x,\mathbb{R}) = \int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x,dy) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \approx \int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx,$$
for any $x \in \mathbb{R}$.

• We want to show that if $\pm \infty$ is an entrance point for

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0,$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$.

- ▶ If $\pm \infty$ is an entrance point, then *Z* can be seen as a Feller process on the compact space \mathbb{R} .
- Getoor's equivalent definitions of transience:
 - On the one hand, last exit from any compact set is a.s. finite
 - On the other hand the resolvent of any compact set is finite
- As $\overline{\mathbb{R}}$ is compact itself,

$$G_Z(\pm\infty,\overline{\mathbb{R}})<\infty$$

Hunt-Nagasawa duality implies that

$$G_Z(\pm\infty,\overline{\mathbb{R}}) = G_{\widehat{Z}^\circ}(0,\mathbb{R}) < \infty$$

$$\infty > G_{\hat{Z}^{\diamond}}(0,\overline{\mathbb{R}}) \approx G_{\hat{Z}^{\diamond}}(x,\mathbb{R}) = \int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x,\mathrm{d}y) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \approx \int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} \,\mathrm{d}x,$$

for any $x \in \mathbb{R}$.

• We want to show that if $\pm \infty$ is an entrance point for

$$dZ_t = \sigma(Z_{t-}) \, dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0,$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$.

- ▶ If $\pm \infty$ is an entrance point, then *Z* can be seen as a Feller process on the compact space \mathbb{R} .
- Getoor's equivalent definitions of transience:
 - On the one hand, last exit from any compact set is a.s. finite
 - On the other hand the resolvent of any compact set is finite
- As $\overline{\mathbb{R}}$ is compact itself,

$$G_Z(\pm\infty,\overline{\mathbb{R}})<\infty$$

Hunt-Nagasawa duality implies that

$$G_Z(\pm\infty,\overline{\mathbb{R}})=G_{\widehat{Z}^\circ}(0,\mathbb{R})<\infty$$

$$\infty > G_{\hat{Z}^{\diamond}}(0,\overline{\mathbb{R}}) \approx G_{\hat{Z}^{\diamond}}(x,\mathbb{R}) = \int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x,\mathrm{d}y) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \approx \int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} \,\mathrm{d}x,$$

for any $x \in \mathbb{R}$.

• We want to show that if $\pm \infty$ is an entrance point for

$$dZ_t = \sigma(Z_{t-}) \, dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0,$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$.

- If $\pm \infty$ is an entrance point, then *Z* can be seen as a Feller process on the compact space $\overline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
 - On the one hand, last exit from any compact set is a.s. finite
 - On the other hand the resolvent of any compact set is finite
- As $\overline{\mathbb{R}}$ is compact itself,

$$G_Z(\pm\infty,\overline{\mathbb{R}})<\infty$$

Hunt-Nagasawa duality implies that

$$G_Z(\pm\infty,\overline{\mathbb{R}}) = G_{\widehat{Z}^\circ}(0,\mathbb{R}) < \infty$$

$$\infty > G_{\hat{Z}^{\circ}}(0,\overline{\mathbb{R}}) \approx G_{\hat{Z}^{\circ}}(x,\mathbb{R}) = \int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x,dy) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \approx \int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx,$$

for any $x \in \mathbb{R}$.

• We want to show that if $\pm \infty$ is an entrance point for

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0,$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$.

- If $\pm \infty$ is an entrance point, then *Z* can be seen as a Feller process on the compact space $\overline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
 - On the one hand, last exit from any compact set is a.s. finite
 - On the other hand the resolvent of any compact set is finite
- As $\overline{\mathbb{R}}$ is compact itself,

$$G_Z(\pm\infty,\overline{\mathbb{R}})<\infty$$

Hunt-Nagasawa duality implies that

$$G_Z(\pm\infty,\overline{\mathbb{R}}) = G_{\hat{Z}^\circ}(0,\mathbb{R}) < \infty$$

$$\infty > G_{\hat{Z}^{\circ}}(0,\overline{\mathbb{R}}) \approx G_{\hat{Z}^{\circ}}(x,\mathbb{R}) = \int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x,dy) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \approx \int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx,$$
for any $x \in \mathbb{R}$.

• We want to show that if $\pm \infty$ is an entrance point for

$$dZ_t = \sigma(Z_{t-}) \, dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0,$$

then necessarily $\int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} dx < \infty$.

- If $\pm \infty$ is an entrance point, then *Z* can be seen as a Feller process on the compact space $\overline{\mathbb{R}}$.
- Getoor's equivalent definitions of transience:
 - On the one hand, last exit from any compact set is a.s. finite
 - On the other hand the resolvent of any compact set is finite
- As $\overline{\mathbb{R}}$ is compact itself,

$$G_Z(\pm\infty,\overline{\mathbb{R}})<\infty$$

Hunt-Nagasawa duality implies that

$$G_Z(\pm\infty,\overline{\mathbb{R}}) = G_{\hat{Z}^\circ}(0,\mathbb{R}) < \infty$$

$$\infty > G_{\hat{Z}^{\circ}}(0,\overline{\mathbb{R}}) \approx G_{\hat{Z}^{\circ}}(x,\mathbb{R}) = \int_{\mathbb{R}} G_{\hat{X}^{\dagger}}(x,\mathrm{d}y) \frac{\hat{h}(y)}{\hat{h}(x)} \sigma(1/y)^{-\alpha} |y|^{-2\alpha} \approx \int_{\mathbb{R}} \sigma(x)^{-\alpha} |x|^{\alpha-1} \,\mathrm{d}x,$$

for any $x \in \mathbb{R}$.

DIFFICULTIES IN OTHER REGIMES

- Two sided jumps
 - $\alpha \leq 1$ Cannot hit the origin, so cannot time reverse from the origin or condition to avoid the origin
 - $\alpha = 1$ Can time reverse from first entry into strip (-1, 1)
 - $\alpha < 1$ Can do the same as $\alpha = 1$ but cannot control the time change to explosion

One sided jumps

- In the (negative) subordinator cases, don't need to look at conditioned processes on time reversal
- For the unbounded variation spectrally one-sided case, end up looking at conditioning to stay positive or negative instead of conditioning to avoid the origin

18/23

・ロト・日本・モト・モト・モー のへぐ

DIFFICULTIES IN OTHER REGIMES

- Two sided jumps
 - α ≤ 1 Cannot hit the origin, so cannot time reverse from the origin or condition to avoid the origin
 - $\alpha = 1$ Can time reverse from first entry into strip (-1, 1)
 - $\alpha < 1$ Can do the same as $\alpha = 1$ but cannot control the time change to explosion
- One sided jumps
 - In the (negative) subordinator cases, don't need to look at conditioned processes on time reversal
 - For the unbounded variation spectrally one-sided case, end up looking at conditioning to stay positive or negative instead of conditioning to avoid the origin

EXPLOSION (EXIT AT INFINITY)

Theorem (Döring & K. (2018))

Suppose that $\sigma > 0$ and let

$$I^{\sigma,\alpha}(A) = \int_A \sigma(x)^{-\alpha} |x|^{\alpha-1} dx.$$

Then the following table exhaustively summarises finite time explosion for

$$dZ_t = \sigma(Z_{t-}) dX_t, \qquad Z_0 = z \in \mathbb{R}, t \ge 0.$$

Necessary and sufficient conditions for exit at infinite boundary points				
α	Jumps	$+\infty$	$-\infty$	±∞
	only↓	X	$✓$ iff $I^{\sigma, \alpha}(\mathbb{R}_{-}) < ∞$	X
< 1	only ↑	\checkmark iff $l^{\sigma,\alpha}(\mathbb{R}_+) < \infty$	×	X
	↑&↓	X	X	$✓$ iff $I^{\sigma, \alpha}(\mathbb{R}) < ∞$
= 1	$\uparrow \& \downarrow$	X	X	X
	only↓	X	X	X
> 1	only ↑	X	×	X
	↑&↓	X	X	X
= 2	none	X	X	X

Thank you!

